Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Random data generators can be thought of as parsers of streams of randomness. This perspective on generators for random data structures is established folklore in the programming languages community, but it has never been formalized, nor have its consequences been deeply explored. We build on the idea of freer monads to develop free generators, which unify parsing and generation using a common structure that makes the relationship between the two concepts precise. Free generators lead naturally to a proof that a monadic generator can be factored into a parser plus a distribution over choice sequences. Free generators also support a notion of derivative, analogous to the familiar Brzozowski derivatives of formal languages, allowing analysis tools to preview the effect of a particular generator choice. This gives rise to a novel algorithm for generating data structures satisfying user-specified preconditions.more » « less
-
Property-based testing is a mainstay of functional programming, boasting a rich literature, an enthusiastic user community, and an abundance of tools — so many, indeed, that new users may have difficulty choosing. Moreover, any given framework may support a variety of strategies for generating test inputs; even experienced users may wonder which are better in a given situation. Sadly, the PBT literature, though long on creativity, is short on rigorous comparisons to help answer such questions. We present Etna, a platform for empirical evaluation and comparison of PBT techniques. Etna incorporates a number of popular PBT frameworks and testing workloads from the literature, and its extensible architecture makes adding new ones easy, while handling the technical drudgery of performance measurement. To illustrate its benefits, we use Etna to carry out several experiments with popular PBT approaches in both Coq and Haskell, allowing users to more clearly understand best practices and tradeoffs.more » « less
-
Transactional objects combine the performance of classical concurrent objects with the high-level programmability of transactional memory. However, verifying the correctness of transactional objects is tricky, requiring reasoning simultaneously about classical concurrent objects, which guarantee the atomicity of individual methods—the property known as linearizability—and about software-transactional-memory libraries, which guarantee the atomicity of user-defined sequences of method calls—or serializability. We present a formal-verification framework called C4, built up from the familiar notion of linearizability and its compositional properties, that allows proof of both kinds of libraries, along with composition of theorems from both styles to prove correctness of applications or further libraries. We apply the framework in a significant case study, verifying a transactional set object built out of both classical and transactional components following the technique oftransactional predication; the proof is modular, reasoning separately about the transactional and nontransactional parts of the implementation. Central to our approach is the use of syntactic transformers oninteraction trees—i.e., transactional libraries that transform client code to enforce particular synchronization disciplines. Our framework and case studies are mechanized in Coq.more » « less
An official website of the United States government
